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Phase transitions between partial wetting states in the 
Landau theory and the Van der Waals theory of adsorbed 
fluids 

G Langie and J 0 Indekeu 
Laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, 
Celestijnenlaan UM D, B-3001 Leuven, Belgium 

Received 29 July 1991, in 6nal form 29 August 1991 

AbslracL Adsorption phase transitions beween distinct partial wetting Slates (or ‘thin- 
thick’ Wansitions at bulk -.phase wetistence) are studied systematically in the phe- 
nomenological Landau theory for king models, as well as in the Sullivan model, 8 

more m i m m p i c  Van der Wals theory for fluids. In the Landau theory the previously 
pmposed mechanism of compting surface fields is examined in detail and canfirmed. 
In the generalized Sullivan model with combined exponential and square-well wall-fluid 
potentials, thin-thick transitions are found a lmdy  if the patential is purely squarewell. 
A mapping of the Van der Waals to the Landau theory suggerts that the mechanism of 
competing surface fields can largely explain the new phase transitions. 

1. Introduction 

Wetting phenomena have been studied in great detail, experimentally, theoretically 
and in computer simulations, during the last 15 years. Several review articles have 
been devoted to wetting and related interfacial phenomena. Among the most recent 
are the reviews by Dietrich (1988), Evans (1990a,b), de Gennes (1990), Cazabat 
(1990), Schick (1990), Beysens (1990) and ForgAcs er a2 (1991). The wide range of 
possible wetting phenomena predicted by theory are not all observed in experiments. 
As a matter of fact, some of the theoretically allowed possibilities are very unlikely 
to be observable (for example, complete drying by vapour in a onecomponent fluid 
at a wall). The theoretically predicted phase diagrams are often complex Even 
restricting ourselves to fluids at liquid-vapour coexistence adsorbed at a flat wall with 
only short-range substrate-adsorbate forces, a rich variety of surface and interfacial 
transitions and (multi-)critical phenomena can occur. 

The Landau theory and the closely related continuum mean-field theoly predict 
first- or secondader wetting phase transitions from partial to complete wetting, upon 
approach of the bulk critical point: critical-point wetting (Cahn 1977, Nakanishi and 
Fisher 1982). This is the generic behaviour for systems with short-range substrate- 
adsorbate forces. For a special (non-generic) choice of the interactions, the opposite 
phenomenon of critical-point dewetting is theoretically possible (Indekeu 1987). 

In an alternative mean-field theory, the Van der Waals theory, Sullivan (1979) 
showed that, in the so-called zeroth-order approximation, the wetting transition is 
secondader, provided the attractive wall-fluid potential and the fluid-fluid potential 
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are decaying exponentially rapidly with distance and have the same range. Introduo 
ing different ranges for the potentials in this model, the wetting transition typically 
becomes first-order when the wall-fluid potential is longer ranged than the fluid-fluid 
potential, and remains second-order otherwise (Hauge and Schick 1983, nrazona and 
Evans 1983, Pletzke et a1 1983, Aukrust and Hauge 1985, Ding and Hauge 1987). 
For possible exceptions in closely related models, see, for example, Ding (1991). 

If one theoretically allows for the presence of two independent surface fields, 
possibly competing with each other (one prefering liquid, and the other vapour), the 
wetting phase diagram becomes complex, but also very interesting. A new adsorp- 
tion phase transition can occur, between two diRerent states of partial wetting. It 
is commonly called a thin-thick transition, because the associated order-parameter 
profiles often (but not always!) resemble thin and thick wetting films. Perhaps the 
most important physical situation for this kind of transition to occur is in systems 
where short-range forces favouring, say, wetting, are in competition with weak but 
long-range forces favouring drying. This is the so-called antagonist case (de Gennes 
1983) and has been dedicated much theoretical attention (Nightingale and Indekeu 
1985, Ebner and Saam 1987) as well as experimental exploration (Durian and Franck 
1987). The physics underlying this phenomenon is that a macroscopically thick wet- 
ting film is unstable in the presence of opposing long-range forces. The equilibrium 
wetting layer thickness is then finite rather than infinite. 

Fairly surprisingly, similar thin-thick transitions were found in systems with strictly 
short-range surface fields, and at bulk two-phase coexistence (Aukrust 1987, Indekeu 
1989). These transitions are, in our opinion, to be distinguished from prewetting 
phenomena that occur away from bulk phase coexistence (Cahn 1977, Nakanishi and 
Fisher 1982, Pandit er a1 1982). Indeed, the presently considered thin-thick transitions 
can occur in the presence of macroscopic adsorbed drops with finite contact angles. 
Furthermore, the transitions have their own prewetting extensions and may interplay 
in interesting ways with the usual (finiteinfinite) wetting transitions (see further). 

ks regards the relevance of these phenomena to realistic systems, one should note 
that wetting transitions in systems with short-range forces can be strongly influenced 
by those fluctuations which are not captured in the mean-field theories we apply. In- 
deed, at the upper critical dimension d,, = 3 for critical wetting and complete wetting 
in the presence of short-range forces, important corrections to mean-field behaviour 
should be expected, as reviewed by Dietrich (1988). The situation is qualitatively dif- 
ferent in systems with long-range forces. There d, < 3, and consequently mean-field 
behaviour should be observable in real systems in d = 3. An interesting example 
for our purpmes is the thin-thick transition (e.g., a jump from 2 to 8 adsorbed lay- 
ers) preceding a critical wetting transition, uncovered by Dietrich and Schick (1985) 
in a mean-field calculation for a lattice-gas model in which all potentials are long 
ranged. This result is quite likely to be applicable directly to real systems. Note that 
the accompanying sequence of single-layer transitions (‘layering’) is, in contrast, a 
consequence of the use of the lattice mean-field approximation (Dietrich and Schick 
1985). 

In the following two sections we discuss thin-thick transitions that precede wet- 
ting (or drying) transitions, within two theories in which only short-range substrate- 
adsorbate potentials are considered: the continuum mean-field theory (related to the 
Landau theory), in section 2, and the zeroth-order Van der Waals theory, in section 3. 
Finally, we will discuss to which extent there is a competition present between the 
substrate-adsorbate fields that are featured in these two theories, in section 4. 

G Langie and J 0 Indekeu 
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2. Landau theory and continuum mean-field theory 

The Landau theory is based on a square-gradient approximation to the intrinsic free- 
energy functional. This phenomenological theory does not relate the properties of 
the non-uniform fluid to the interactions occurring on a molecular level, but provides 
good qualitative results in some vicinity of T, (the critical temperature of the bulk 
fluid). In the magnetic language, the surface freeenergy functional is written as 

The flat substrate is at z = 0, the fluid order parameter, or magnetization, m(z),  
takes the value ml m ( r  = 0) at the wall and varies between -1 and +1 for 
r > 0. The reduced bulk freeenergy density f(m) (divided by ICBTc) is given by 

f(m) = -- m2 + - Jnr tanh-'m'dm' + bo 
2 Tc 

where the constant bo is such that min[f(m)] = 0. Conceming terminology, we note 
that f ( m )  as given in (2.2) is the freeenergy density appropriate to the continuum 
mean-field theory, whereas one usually speaks of the Landau theory if f(m) is 
truncated and approximated by a fourth-order polynomial in m. 

The substrate-adsorbate contribution to the surface free energy is modeled by a 
single term TS(ml), which depends only on the order parameter of the fluid at the 
wall. We assume the following form for y,( m,) (Diehl 1986, Indekeu 1987, Ciach 
and Diehl 1990) 

r,(ml) = -h,m, - g m t / 2  - h,mf/3 (23) 

where h, and h, are two surface fields which act only on the first surface layer, 
and the surface-coupling enhancement g describes the modification of the fluid-fluid 
interaction near and parallel to the surface. For a derivation of (23), see, for example, 
Maritan et a1 (1991). 

One can introduce competing fields in this theory by imposing h,h, < 0 (Langie 
and Indekeu 1989). 'Ib see how the competition arises, let us consider the effects of 
h, and h, separately. When one considers, e.g., a negative h,-field (and h, = 0) the 
usual first- or second-order drying transitions are obtained, and complete drying is 
found sufficiently close to T, (Nakanishi and Fisher 1982). A positive h,-field (with 
h, = 0), on the other hand, results in first-order wetting or deweaing transitions 
(Indekeu 1987). Whether or not complete wetting is found close to T, depends on 
the sign of g and the strength of h,. When the two fields (h, < 0 and h, > 0) 
are combined, a new phase transition between two partial drying states can occur 
(Indekeu 1989). Intuitively, when T is raised towards T, the system may display a 
transition between a thin and a thick drying layer, as a compromise between the drying 
tendency imposed by h, and the opposing wetting trend dictated by h,. Sufficiently 
near Tc, however, the drying tendency dominates in such cases, and a genuine drying 
transition follows. (In a different region of the phase diagram, at larger h,, the 
wetting trend wins and complete wetting is achieved.) 
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Figure 1. Sections through a Ihreedimensional drying phase diagram in the continuum 
mean-field theory for hl /e = -0.01. Firsr-order (solid lines) and secondorder (dashed 
lines) parlial-locomplete drying and thin-thick lransitions, as well as critical points (CP), 
triple points (w), crilical endpoints (CeP) and tricritical p i n t s  ("CP) are indicated for 
g/c = -0.001, -0.0001, 0.00001 and 0.0004. The first of lhese four sections lies 
entirely within the rear face (of which all four edges arc dram) of the displayed cubic 
frame, while thc last lies within the front face (of which only hvo edges are draw). 

In figure 1 the influence of the surface-coupling enhancement g on the thin-thick 
transitions is visualized in a three-dimensional phase diagram for fixed h, /c  = -0.01. 
Note that reversing the signs of both h, and h, is of no consequence other than 
that 'drying' is to be replaced by 'wetting'. We have found that, in a narrow range of 
h,-fields and for fixed g/c < 4 x a first-order thin-thick transition precedes 
the first-order or second-order drying transition, as temperature is increased. For 
example, for g/c  = -1x lo-,, we distinguish a tricritical point (TCP), where the order 
of the drying transition changes, a surface critical point (cP), where the thin-thick 
phase boundary terminates, and a critical endpoint (CEP), where the critical drying 
phase boundary meets the first-order phase boundaries of thin-thick transitions or 
drying transitions. It is seen that, at that point, the state of critical drying coexists with 
the (non-critical) thin-layer phase, justifying the denomination of critical endpoint. 

Increasing g, the surface critical point (CP) moves towards the first-order drying 
phase boundary, and touches it, at some g-value in the interval -1 x < g/c < 
-1 x IO-5. If g is increased further, a triple point (TP) is found where the thin-layer 
phase, the thick-layer phase and the completedrying phase coexist. In other words, 
in this three-dimensional phase diagram, a line of surface critical points and a line 
of triple points meet in a distinct critical endpoint (cEP*). At this (unique) point, a 
critical partial drying phase coexists with a non-critical complete drying phase. 

Increasing g further, the triple point (Tp) and the formerly discussed critical 
endpoint (CEP) move closer to one another and finally coincide at a g-value in 
the intetval 3 x lo-' < g/c < 4 x lod4. This results in the disappearance of 
the thick-layer phase and of the thin-thick transitions. Thus, they are absent for 

In summary, in this continuum mean-field theory, the thin-thick transition is found 
in the regime where the two surface fields, h, and h,, have oppmite sign. These 
competing local fields play a subtle role because their competition is not persistent 

g / c  >, 4 x 10-4. 
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enough (as a function of temperature) to suppress transitions to complete wetting 
(or drying). In contrast, in the case of competing long-range and short-range surface 
fields, thin-thick transitions replace true wetting transitions (Nightingale and Indekeu 
1985, Ebner and Saam 1987). In the following section we will investigate if the thin- 
thick transitions that appear in an alternative density functional theory can also be 
interpreted in tenns of competing wetting and drying tendencies. 

3. Van der Waals theoly 

3.1. Model 

The preceding continuum mean-field theory is highly phenomenological and not spe- 
cific, in the sense that it applies not only to one-component fluids, but to a whole 
class of systems with an king-type order parameter (uniaxial magnets, . . .). In con- 
vast, the Van der Waals (VDW) theory for non-uniform fluids, an alternative theory 
of mean-field type, is specific and is based on a microscopic description of the inter- 
molecular forces We will examine only its simplest, zeroth-order, realization. The 
intermolecular pair potentials are considered as consisting of two separate additive 
parts, a short-range repulsive part and a weak long-range attractive part. We take the 
following form for the surface excess freeenergy density functional y [ p ( z ) ]  of an in- 
homogeneous single-component fluid in the presence of an external field (Evans 1979) 

for a fluid with density profile p(+) ,  which is a function of the distance z from a 
structureless wall at I = 0. (We assume a uniform density in all other directions.) 
The lint term in the integral is the Helmholtz freeenergy density fh (p ( t ) )  of a 
uniform hard-sphere reference fluid in the local density approximation, p is the 
chemical potential of the system, + is an external potential (in this case the wall- 
fluid potential), p is the bulk pressure and x(lr - x'l) is the attractive fluid-fluid 
pair potential (integrated over lateral dimensions). The properties of the hard-sphere 
fluid are regarded as known. We choose the ideal lattice gas-model for the hard core 
system. That is, 

p h  E afh/ap = kBTln(p/(1 - (3.2) 

The following forms for the substrateadsorbate potential $( z )  and the fluid-fluid 
potential x(x) are taken (Piasecki and Hauge 1987) 

+(t) = --Ce-l- Eo~("o - x) 
x([z - t I I) = -(")e-'-''. 

(3.3) 

(3.4) 

Following previous works, we assume short-range (essentially exponentially decaying) 
interparticle potentials. This restricts the physical applications but provides substan- 
tial technical advantages, allowing a thorough analysis of various important physical 
mechanism described by the theory. The wall-fluid potential contains two parts: an 
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exponential part (as in Sullivan’s model) and a square-well part (with range zo). Note 
that the range (ie., the characteristic decay length) of the two exponential potentials 
is the same and we define it as our unit of length. Also note that the short-range 
oscillations in the density, due to the presence of a hard wall, are neglected in this 
theory. Thus, since only slowly varying density profiles are featured, the theory is pri- 
marily applicable in some vicinity of the bulk critical point (located at kBTc = a / 4 ,  
in the mean-field approximation). In this respect, the zerothader VDW theory is 
similar in scope to the Landau theory. 

Functional differentiation of y [ p ( x ) ]  with respect to p ( x )  gives the following 
integral equation for p ( z ) ,  

G Langie and J 0 Indekeu 

m 

p = f%( f ( z ) )  f #(z) + 1 dz’X(lz- x’ l )p(x‘ )  (3.5) 

as the equilibrium condition, with the boundary conditions p( I < 0) = 0 and p( I + 
05) = pv,pur (which is the proper set-up for investigating wetting phenomena if there 
is preferential adsorption of liquid) or p ( x  --+ M) = pliqvid (in case of preferential 
adsorption of vapour). Integral equation (3.5) can be reduced to a second-order 
differential equation for ph, so that the freeenergy minimalization problem can be 
solved making use of the mechanical analogy of a particle moving in an external 
potential (Sullivan 1979, Piasecki and Hauge 1987). 

Considering the specific choice (3.3) and (3.4) for the attractive potentials, Piasecki 
and Hauge (1987) mentioned the possibility that not only a second-order or first- 
order wetting transition was possible, but also a first-order ‘thin-thick’ transition 
between partial wetting states, followed by a continuous wetting transition. Aukrust 
(1987) showed the existence of such a thin-thick transition in a restricted region of 
the parameter space (zo,co, 6). In his calculations, Aukrust employed the iteration 
scheme of “razona and Evans (1983). 

3.2. Thin-lhick adsoption phase transitions 

Because of the presence of the square-well wall potential, the model can be viewed as 
a combination of two Sullivan models. For x > zo it reduces to the original Sullivan 
model, at two-phase coexistence, with p/kBTc  =--2. For I < zo, it reduces to 
the Sullivan model out of two-phase coexistence, with an effective chemical potential 
pest p + E,,. From now on we work with the scaled variables m I p/kBT0 
A = a/kBTc = 4, E = e/kBTc, Eo = co/kBTc, and E = ph/kBTc.  These 
definitions are almost identical to those used by Piasecki and Hauge (1987). 

Our numerical procedure for obtaining the profiles that extremize the free energy 
is as follows. An arbitrary value of [(xi) is chosen. The matching condition at 
xo (Piasecki and Hauge 1987) then implies E(.;) = <(I:) + E,,. From this value 
of <(z;) follows the precise form of the ‘potential’ V - ( [ )  that determines the 
trajectory in the phase portrait, for 0 < z < z0. The boundary condition at the 
wall then selects the appropriate initial value [(O). From the knowledge of [(O) and 
[(z;), simple integration along the trajectory in the phase portrait gives zo. In sum, 
a (multi-valued) function zo([(z;)) is obtained. The extrema of the free energy for 
a given z0 are finally obtained as the intersections of ths  multi-valued function with 
a straight line at the given value of z0. 

The equilibrium solution, with the lowest free energy, can be obtained by com- 
puting the surface excess free energy of the extrema1 solutions, using an analogue of 
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Sullivan’s geomehic interpretation of the surface tension (Sullivan 1981, Piasecki and 
Hauge 1987). Following this procedure we have computed surface phase diagrams 
corresponding to various regions of the parameter space (x,, E,, E). We have also 
developed an alternative procedure, which amounts to minimizing a one-variable free- 
energy function ~ ( ( ( 0 ) ) .  This refinement has proven to he very useful for mapping 
the MW theory onto a Landau theory, and will be discussed in some detail further 
on. 

Figure 2 represents a phase diagram computed for fixed values of I, and E,, 
chosen withii a region where the thin-thick transitions should be expected according 
to Aukrust’s preliminary calculations. The square-well wall potential has a width 
I,, = 4.5 and a depth E,, = 0.04. The amplitude of the exponential wall potential, 
E, and the scaled temperature, T/T,, are the variables of the phase diagram. Firstly, 
along the dasheddotted line there is no preferential adsorption (the surface excess 
free energy for liquid in bulk is the same as for vapour in bulk; in other words, 
Young’s contact angle equals goo). This l i e  ends at T = T, and E = 0.706. Below 
this line, the vapour phase preferentially adsorbs on the wall and a drying transition 
appears, which is first-order for low temperatures and changes to secondmder at a 
tricritical point TCP (at E 0.076 and T/T,  w 0.893). On the wetting side (above 
the dashed-dotted lie), a phase boundary of first-order thin-thick transitions is found 
(solid l i e ) ,  preceding a phase boundary of second-order wetting transitions (dashed 
line). The two phase boundaries are very close to each other. The thin-thick phase 
boundary ends at a surface critical point CP (at E = 1.209,T/TC % 0.876). The 
wetting phase boundary near T, behaves as 

E(T,) - E(TJ a (T, - Tw)o.5 (3.6) 
where T, is a wetting temperature, and the uncertainty on the numerically determined 
exponent is 0.03. We note that the same exponent 1/2 is obtained in the Landau 
theory with surface-coupling dehancement (g < 0)  (Nakanishi and Fisher 1982). It 
is known that the present VDW theory corresponds to g < 0 in the Landau theory 
(Sullivan 1979, 1981; see also our next section). Physically, dehancement of the 
surface coupling corresponds to the reduction of the fluid-fluid interaction near a 
wall, due to the reduction of the number of nearest-neighbour pairs. 

Probably our most important new result is that the thin-thick transition occurs 
already in a simpler model in which only the square-well wall-fluid potential is fea- 
tured (i.e., E = 0). We have computed phase diagrams in the variables E,, and 
T/T,  for several values of I,,. The phase diagrams for I,, = 2 and z,, = 3 are 
qualitatively similar to the one of figure 2, with a thin-thick phase boundary well 
separated from the wetting phase boundary. (For these phase diagrams, the inter- 
ested reader is referred to unpublished work (Langie 1991).) When the range of the 
square well, I,,, is increased, the distance between the wetting phase boundary and 
the thin-thick phase boundary decreases. At some z0 between 3 and 4.5 the two 
phase boundaries meet, and partly coincide when I, is increased further. This is 
illustrated in the phase diagram of figure 3, for I, = 4.5. The two critical endpoints 
(CEP) represent the coexistence of the critical wetting transition with the (non-critical) 
thin-layer phase. In between these CEPs, the wetting transition is first-order. On the 
drying side it is seen that the drying phase boundary approaches E,, = 0, in the limit 
of low temperatures. This is consistent with the known fact that a hard wall (E,, = 0) 
is always completely dry (Henderson and Van Swol 1984). If I,, is further increased 
the segment of the thin-thick transitions on the high-temperature side (from CEP to 
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F l p r e  2. Wetting (and drying) phase diagram in the Van der Walr theory for Eo = 0.04 
and 20 = 4.5. Solid lines represent firstorder phase boundaries and dashed lines 
secondorder ones. The inset shows that the Ihin-thick transition is separated, for all 
temperatures, from the wetting transition. 

CP) shrinks away, and what is left is a tricritical point (TCP) on the wetting phase 
boundary. For example, for zo = 10, Tm/Tc x 0.989 and Eo,Tcp x 0.034. For 
za = 10 also the wetting phase diagram has been computed (Langie 1991). 

Eo I '\ I I I I I 
COMPLETE WETTING 

03 

PAKFIAL WETTING 

COMPLETE WETTING 

03 

PAKFIAL WETTING 

Figure 3. Welling (and djmg) phase diagram in the Van der Waals theory for 20 = 4.5 
and E = 0. Solid lines: firstorder transilions; dashed lines: secondorder ones. 

Furthermore, we have also studied prewetting phenomena (away from bulk coexis- 
tence) for the model with the square-well wall-fluid potential (E = 0), for xo = 4.5, 
and for various values of Ea (see figure 4). The scaled bulk field H is defined as 
H E m + 2. The prewetting phase boundaries as well as the extensions of the thm- 
thick transitions into the bulk one-phase region terminate in surface critical points 
(CP) which converge, with decreasing Eo, to the surface critical point of the thin-thick 
transitions at bulk coexistence. Note that all critical points are qualitatively similar. 
Provided they still exist beyond mean-field theory, they are expectad, for Ising-like 
fluids, to belong to the two-dimensional Ising universality class. 
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Figun 4. Prewetting phase diagram in the Van der Waals theory out of bulk hvo-phase 
coexistence (H is the bulk field), for 20 = 4.5 and E = 0. The prewetting lines as 
well as the eytensions of the thin-thick transitions are d r a w  for various v a l m  of Eo 
(from left to right, EO = 0.355, 0.333, 0.300, 0.259, 0.238, 0.225, 0.211). 'They 
originate, at bulk coexistence ( H  = 0), rspectiveiy, at a thin-thick transition Tl', the 
critical endpoint CEPl, wetting transitions W ,  the critical endpoint CEP?, and a thin-thick 
transition m. CP is a surface critical point at bulk coexistence. Prewetting lines meet 
the line H = 0 horizontally [not visible on this scale!), at W and cep. whereas the 
mensions of the thin-lhick transitions approach Tr with non-zero slope. 

4. Discussion 

The first part of this discussion is devoted to some novel implications of the phase 
diagrams, and the second part deals in detail with the mechanism of competing 
surface fields. 

Concerning the phase diagrams, in particular figures 1, 3, and 4, we would like to 
point out the following feature. When a first-order wetting transition changes into a 
continuous one, this is commonly expected to occur via a tricritical point. At this point 
a line of prewetting critical points merges with bulk two-phase coexistence. In other 
words, at tricritical wetting as well as at critical wetting there is no prewetting line 
(Nahnishi and Fisher 1982). This scenario applies, of course, to the tricritical wetting 
transitions labelled with TCP in our phase diagrams. However, a qualitatively very 
different and in our opinion novel scenario is seen at the critical endpoints CEP. There, 
fit-order wetting changes to critical wetting, but at the point where this change 
occurs there is a genuine prewetting l i e  (as demonstrated in figure 4). Furthermore, 
beyond this point, Le., at critical wetting, the prewetting line is absent (as should be 
expected), but it is perhaps meaningful to say that, at CEP, it disconnects from the 
wetting transition and shifts towards lower temperatures. Thus, the prewelting line 
appears to be replaced by the line that extends the thin-thick transition into the bulk 
one-phase region. 

Figure 4 naturally raises the interesting question of how the prewetting lines and 
the lines of off-Coexistence thin-thick transitions approach the hulk phase boundary 
(i.e., the horizontal line at H = 0). As is well known, Hauge and Schick (1983) made 
definite predictions in this regard and argued that the prewetting line approaches the 
bulk phase boundary tangentially, asymptotically as dH/dT m (In If)-1 for short- 
range forces, and as dH/dT a H'IZ for wall-fluid potentials decaying as z-=. For 
the mean-field theories we have employed, the result for short-range forces applies, 
implying that the slope of the prewetting line approaches zero extremely slowly as 
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H + 0. We have checked this numerically, e.g., for the prewetting line starting at the 
first-order wetting transition W at TIT, w 0.80 in figure 4. The data are consistent 
with the inverse logarithm, but, as one might have expected, this behaviour is not 
visible on a normal scale and this tangential approach is therefore not evident from 
figure 4. Next, what about the lines starting at thin-thick transitions ('IT in figure 4)? 
Examining Hauge and Schick's argument again, it is clear that the tangential approach 
is a consequence of the fact that the jump in layer thickness at preweaing diverges 
as H + 0. Since, in contrast, this jump remains finite (and usually small) when 
'IT is approached as H + 0, we conclude that, in general, the approach will be 
at a non-zero angle. We have checked numerically that, e.g., for the line starting 
at the thin-thick transition at TIT, w 0.87, the asymptotic behaviour for small H 
is consistent with dH/dT w constant. Finally, at the critical endpoints CEP the 
argument of Hauge and Schick applies, because the jump in layer thickness diverges 
for H -., 0, and one should thus expect a tangential approach as for prewetting, but 
possibly with a different algebraic form. We have not done detailed calculations for 
this special case. 

Our second topic concerns the mechanism of competing surface fields. In the 
Landau theory (or, more precisely, the continuum mean-field theory) discussed in 
section 2, it is evident how to introduce a competition between the two surface fields 
h, and h,. It suffices to take them to be of opposite sign so that, when they are 
considered separately, they prefer opposite phases. Our results so far indicate, in 
agreement with what was inferred in a preliminary work (Indekeu 1989), that com- 
peting surface fields appear necessary @ut not sufficient) for a thin-thick transition 
to occur. This consequently suggests that the mechanism for the thin-thick transition 
is the competition of the surface fields. 

Can we attribute the thin-thick transition that is found in the Van der Waals theory 
of the generalized Sullivan model (section 3) to a similar competition mechanism? 
At first sight it looks as if this question should be answerable in terms of a possible 
competition between the two wall-fluid potentials (exponential well and square well). 
However, it is not obvious how to define a competition at the level of these potentials, 
because the effect of their sum need not be a simple combination of the effects 
of each of them, considered separately. For example, it is quite possible that the 
two potentials are both too weak to be able to attract the liquid phase, but that 
their sum is strong enough. This happens, e.g., at E = 0.9, zo = 4.5 and Eo = 
0.04. For these parameter values there is preferential adsorption of liquid (see 
figure 2), although both the exponential and square-well potentials prefer vapour, 
when considered separately. Indeed, if only the exponential wall-fluid potential is 
present, as in the Sullivan model, one easily shows that there is preferential adsorption 
of liquid provided E > I. (Note that in Sullivan's calculations (1981) the threshold 
value is actually a little higher, E = 1.38, because the CarnahanStarling expression 
for the hard-sphere chemical potential is used.) On the other hand, when only the 
square-well wall-fluid potential is present, e.g., with the choice zo = 4.5, preferential 
adsorption of liquid occurs provided Eo > 0.129 (see figure 3). (Note that a hard 
wall (Eo = 0) is completely dry at all temperatures, so that the introduction of an 
attractive square-well wall potential does not change the preferred phase as long as 
Eo is sufficiently small.) 

Similarly, if in some region of parameter space the two wall-fluid potentials prefer 
opposite phases, when considered separately, that information alone is not sufficient 
to conclude that there is a competition of any meaningful kind. Furthermore, the 

G Langie and J 0 Indekeu 
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location of the thin-thick transitions is not systematically related to the effects of 
the two separate potentials. We have found thin-thick transitions, for example, for 
E > 1.209, with x0 = 4.5 and Eo = 0.04. Incidentally, this is in the regime 
where the two wall potentials prefer opposite phases. However, we have also found 
thin-thick transitions in the purely square-well case, ie., with only one potential 
present (E = 0). In conclusion, the clear-cut competition of surface fields in the 
Landau theory cannot be immediately translated in terms of a competition of wail- 
fluid potentials in the Van der Waals theory, 

Our point of view is that, in order to examine the mechanism for the new tran- 
sition in the Van der Waals theory, it is useful to derive an explicit correspondence 
with the Landau theory. In the following we assume that the adsorbate is at hulk 
two-phase coexistence. We have worked out the surface excess free energy y, given in 
(3.1), with use of the second-order differential equation for ph (Piasecki and Hauge 
1987), but without imposing the boundary condition at the wall, and obtain y as a 
(multi-valued) function of [(O), 

+ w(E(x0) )~o  + $ i " ( O )  + i ( i ( 0 )  - E ( 0 )  - 2 + 2 E +  Eo)' 

- ( ( ( 0 )  - E(0) - 2 + 2 E  + F , ) i ( O ) }  ( 4 4  

where *t(o is the bulk order parameter. (For the meaning of W(c(x;)), see further.) 
Note that this expression reduces to that derived by Piasecki and Hauge (1987) as 
soon as the boundary condition at the wall is imposed. This condition reads 

i ( O ) = E ( O ) + 2 - 2 E -  Eo. ( 4 4  
A number of remarks are in order concerning the expression (4.1). Firstly, in spite 

of appearances, it depends only on the variable ( (0) .  Indeed, the auxiliary variable 
i(O), for example, is nothing more than a compact notation for the (multi-valued) 
function of c(0) that is given by the so-called energy-conservation relation applied 
at the wall (Piasecki and Hauge 1987). Secondly, (4.1) has the interesting properly 
that minimization of it (with respect to [(O)) gives the equilibrium density profile. 
Indeed, we have checked that extremalmtion of (4.1) implies the boundary condition 
(4.2). In other words, the minimization of (3.1), which amounts to solving the integral 
equation (3.9, can alternatively be done in two steps. The second-order differential 
equation implied by (3.5) is implemented first, before imposing the wall-boundary 
condition also implied by (3.5). A significant advantage of this stategy is that, in the 
first step, a free energy expression is obtained that is numerically equal to the original 
expression (3.1) for all profiles that obey the secondader differential equation (the 
Euler-Lagrange equation) with arbitrary [(O). In contrast, the related expressions 
derived by Piasecki and Hauge, and originally by Sullivan, reproduce the actual free 
energy values only in the extrema1 solutions. 

The mapping of the Van der Waals theory onto an equivalent Landau theory is 
now almost accomplished. We split the free energy function into two parts (using 
-dVt/d.$ <, for x > xo): 
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where the dots in (4.3) stand for all the remaining (boundary) terms of (4.1). 
The first part y’ is now recognized as the Landau excess free energy for a fluid 

confined between two parallel walls, a distance I, apart. Vf(() is the bulk free- 
energy density (identical, apart from factors T/T,, to that given by Piasecki and 
Hauge 1989, and E, corresponds to an effective bulk field H = Eo, present in the 
interval between the two walls. The second part yu is seen to correspond simply to the 
Landau excess free energy for a semi-infinite system with a wall at I = I,. The two 
Landau problems are coupled in a non-trivial way, through two matching conditions 
imposed by the equilibrium condition (3.5). These conditions are ~(z;)=((I$) and 
((I:)=((+;) - Eo, and determine the value of the integration constant W ( [ ( x ; )  
that must be included in the energy-conservation relation for part I. Note that this 
constant is trivially canceled in (4.3), but the notation used clarifies the connection 
with (4.1). 

In order to pursue the analogy with the Landau theory further, we identify ex- 
plicitly the effective surface fields and enhancements at the two ‘walls’ at = = 0 and 
I = z0. From the boundary condition (4.2) it is seen that, at the ‘first wall’, the 
surface field is h, = 2E + Eo - 2, and the enhancement is g = -1. The boundary 
condition at the ‘second wall’ at +, reads 

i(+;) = f4-2I7+(((+;) - Eo). (4.5) 

In principle, both signs must be considered. In the actual calculations, it turns out 
that only the minus sign is important for wetting phenomena and only the plus sign 
for drying phenomena. It is instructive to expand this last expression as a series in 
((xi-), 

l ( z ; )  = -h,  - g((X0) - h3(’(r;)  - g4E3(+<) - h5(‘(1<) - . . . (4.6) 

where the effective surface fields and enhancements h , , g , h , ,  etc., are functions 
of temperature (T/T‘), the depth of the square-well wall-fluid potential (E,) and 
the order parameter in bulk (ip). They do not depend on the amplitude of the 
exponential wall-fluid potential. The effective surface field h,  is positive or negative 
if the sign in (4.5) is negative or positive, res ectively. Explicit calculation gives, for 
the leading three. terms, -h,  = *,/d as is seen immediately from (4.9, 

g = [2tanh(EoTc/2T) - E , ] / h ,  

h, = [(l - g2)T/T, - 1 + tanh2(E,Tc/2T)]/(2h,T/T,).  
(4.8) 

(4.9) 

In the pertinent regions of parameter space (near the thin-thick transitions on the 
wetting side of the phase diagrams) we find h,  > 0 ,  g > 0 ,  and h, < 0. Note that 
h,h, < 0. 

We conclude that the profiles that extremize the free energy are fully determined 
by solving the equivalent Landau theory of a fluid confined between parallel walls, 
with the boundary conditions derived above. In particular, in order to see if thin-thick 
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transitions are possible, it suffices to estimate the number of solutions of the Landau 
theory for the slab (z < zo). ’R, do this, the following qualitative considerations are 
helpful. The confined system features the following fields: (i) a bulk field H = E, > 
0,  which favours the liquid phase; (ii) at I = 0, a surface field h, and a surface 
coupling enhancement g (e.g., h, > 0 for E > 0.98 (with Eo = 0.04), and h, < 0 
for E, < 2 (with E = 0)-furthermore, g = -1); (”‘ U) at I = I,, competing surface 
fields h, and h, (h,h, < 0). Higher-order fields h5, h,,, etc., are also present, but 
a numerical analysis indicates that their magnitude decreases rapidly with increasing 
order. Similar results apply for the surface coupling enhancements. For example, for 
I, = 4.5, T/T,  = 0.87, and E, = 0.04, we obtain h, = 0.314, h, = -0.238, 
h, = 0.011, h, = -0.001, . . ., g = O,.OlS, g4 = -0.002, g6 = 0.0002, . . .. 

In view of the presence of these various effective fields, a number of known 
mechanisms for phase transitions in-confined systems apply. Firstly, there is the 
mechanism of capillaly condensation @ossibly coexisting with prewetting), which is 
most effective when the two surface fields, h, at x = 0 and h, at z = I,, are 
(nearly) equal, and opposite in sign to the bulk field H (Evans l W b ,  Nakanishi 
and Fisher 1983). Secondly, so-called quasi-wetting transitions may occur, in which 
a nearly uniform profile changes to an interface-shaped profile. This mechanism is 
strongest when the two surface fields h, are (nearly) opposite, and when the bulk 
field is small (Parry and Evans 1990, Swift et a1 1991). Thirdly, the competition of 
the surface fields h, and h,, at I = I,, which can lead to thin-thick transitions 
(with prewetting-like extensions for H f 0) in semi-infinite geometry (see section 
Z), should be expected to give rise to similar phenomena in a confined system. In 
summary, even when neglecting possible complications of higher than thud-order 
surface fields, there are not less than three distinct mechanisms at work, each of 
which is capable of inducing a phase transition in the slab, and thereby causing a 
transition between distinct partial wetting states, or an ordinary wetting transition, in 
the full profile of the Van der Waals theory. 

For concreteness we briefly discuss two typical cases. Let both the exponential 
and the square well be present, and consider the thin-thick transition at E > 1.209 
(see figure 2). We obtain, in the region where the thin-thick transitions occur, h, > 0 
at d = 0, h, > 0 at x = z0, and H > 0. In this case the only mechanism that is 
pronounced is the competition of surface fields at z = zg (h,h, < 0). The second 
example concerns the purely square-well wall potential (E = 0; see figure 3). We 
obtain h, < 0 at I = 0, h, > 0 at z = z0, and H > 0. This case permits 
the interplay of the quasi-wetting transition mechanism and the mechanism of the 
competition of the surface fields (as in the previous case). 

Our final conclusion is that in the Van der Waals theory the occurrence of thin- 
thick transitions at bulk coexistence can be attributed to a number of mechanisms 
which govern phase transitions in confined and semi-infinite systems in Landau theory. 
Through an explicit mapping of the former theory on the latter these mechanisms can 
be pointed out in terms of effective bulk and surface fields. In all cases investigated, 
the mechanism of competing surface fields h, and h, was seen to be active, which 
suggests that among the mechanism we distinguished, it is the prominent one. 
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